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Abstract

I complete here the basis of the theory exposed in my first article [2] by some complementary
results on stability properties between a set-valued map and its characteristic boundary
set-valued maps, or its selections. I deduce then of these properties the main "Cauchy-Lipchitz
theorems for differential inclusions and finally take up Viability Theory in Banach spaces.
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Introduction

In my first article: "Set-Valued Analysis by Coverings" [2], I defined the notion of covering
and showed its power to extend to the framework of set-valued maps each of the main theories of
Functional Analysis : Algebra, Differential Calculus, Measure and Integration, Distributions and
Fourier Analysis, by preserving their properties and main theorems. Coverings Theory is based
on Lebesgue’s spaces theory, differential geometry principles and, on the other hand, on
fundamental notions and results of Casting and Aumann in the classical Set-valued maps
Measure and Integration theory. Coverings Theory is complementary of Graphical Theory
developed since Kuratowski and Bouligand exactly as Functional Analysis is complementary of
Functions Graphical Theory.

The first article was dedicated to fundamental basis and for that contains very few applications.
I complete here this work by some results more in that sense:

In section 1, I give first a property of heredity between a set-valued map and its
characteristic boundary set-valued maps. Typical of context of Set-valued maps Theory, this
result will bring us to examine differences between Coverings Theory itself and its use as tool of
the of Set-valued maps Theory. Then I expose two theorems of existence and heredity of
selections of a set-valued map.

In sections 2, I deduce of these results the main Cauchy-Lipschitz’s theorems for differential
inclusions and finally, in section 3, I take up Viability Theory, firstly in R™ with an adapted
version of the fundamental Haddad’s Theorem to the coverings context, then with a second
theorem in general Banach spaces, more specific of coverings and ensuing of the Equilibrium
Theorem.

Framework

Every notion used in this paper refers to definitions, fundamental results and notations
exposed in |2]; we just recall that, for functions, all these definitions are equivalent to those of
classical Functional Analysis [4].

If notions of classical Graphical Theory ([1], [3]) are occasionally used it will be specified as
in |2] : Borel-measurability, Aumann-integrability and so on.

Notations

O open set of a Banach space E. I =[0,400[. F :I x O — E a set-valued map

f:({t,y)=2€Ix0— f(z| €L(b)=L"(b,du; E) an internal dynamic of F of basis
b= (b,p) = (n,b, 1)

f 2= f(2) = f(z]b) the subjacent set-valued map to the dynamic f

fr=1(f;);c; a F-covering, i.e. a set of internal dynamics of F' such as

Furthermore we just recall here that, following [2]:

1. a set-valued F' is said to have analytic properties P, ..., P, when it admits a covering f;
which has the properties P, ..., Py, i.e. is such as, for each j in J, f; has the properties P, ..., F.
In this case only such coverings are then considered.



2. A dynamic f of basis b is said O-regular if, for each (¢,v), f(¢,y| is continuous (and then
uniformly continuous (see |2])) on b. In this case, its derivative, if it exists, is defined as an
element of C°(b,L(I x E, E), space included in L(I x E,C°(b, E)) and isomorphic to it if
dim(E) < oo.

A differentiable covering is then always O-regular.
3. a set-valued map of finite order and convex images is always of order 1.

Remark: Norms in E and R" (n > 1) are denoted ||||, the uniform norm ||| and that of (b) ||,

1 Heredity

1.1 Heredity and characteristic boundary set-valued map
1.1.1 Definitions

a. Let K a closed convex set of F, 6K = K — [o( its boundary. We call characteristic
boundary set and denote 6.K any subset of 0 K which closed convex-cover is K.

b. Let F: I x O —o E a set-valued map with closed convex images. We call characteristic
boundary set-valued map of F and denote 6.F any set-valued map from I x O in E which image,
for each z in I x O, is a characteristic boundary set of F'(z)

Remark: If K is not bounded, the set of its characteristic boundaries can be empty and,
obviously, a set-valued map may not admit characteristic boundary set-valued map.

1.1.2 Theorem

Let z —o F'(z) any union of set-valued maps with closed convex images z —o F;(z), i € I.
If for each 7 in I, F; admits a characteristic set-valued map z —o 0.F; (z) measurable, respectively
(locally) integrable, of C*-class k < 0o, so is z —o F ().
Proof:

It follows directly from basis exposed in [2] considering the lemma:

lemma
Let a fixed 7 in I and (2 — f;(2]); ., a covering of 2 —o 6.F; (), then (2 — f;;/ (2[)
defined by:

(4.5") €J?

Fig(zle 2, N) = My (z]lz) + (1= X) f (z]2"), V(x,2',\) € Bjjy =b; x by x [0;1]

is a covering of z —o Fj (2).

1.1.3 Application fields of coverings

This theorem is typical of set-valued maps point of view: the boundary determines the
whole but it is not generally the same for coverings. Each result on coverings give a similar result
on set-valued maps, nevertheless the passage of a covering to its subjacent set-valued map is
almost always a loss of information and then often a loss of theoretical power and capacity of
modeling. Let us give some basic examples:

Loss of theoretical power:



(1) A set-valued map can be on one hand continuous (i.e. admits a continuous covering)and
on the other O-regular (i.e. admits a 0-regular covering) but not both 0-regular and continuous
(i.e. admits a O-regular and continuous covering) [see Recalls or [2] for more details]

(2) If f7 = (fj:0)),e, : t €1 — fi(t| € L(b;, E) is a continuous covering, then it is locally

integrable and its primitive t — fot frdr is a differentiable covering of derivative:
t
d [ frdr= 1,
0

It ensues that the continuous set valued map fs is locally integrable and its primitive
t— fot frdr is a differentiable set-valued map but we have only

d/oﬁdTDﬁ

The equality is become a simple inclusion (see [2]).
Loss of capacities of modeling:

(2) Let R > 0,w > 0 and consider the 4 following coverings defined on R and of subjacent
images in R? and let us suppose that their expressions are justified, for example, by a concrete
observation:

J1 of order 1, basis b, = (ERz 0,1) ,dl’/w> Yt — fY(t] cxeb, — Ra

f? of order 1, basis by = ([O, 1] x [0, 27] ,dl'/ﬂ> :

f2it— f2(t] 2z = (r,0) = rR(cos (0 + 1o (1) wt) ,sin (8 + 1o« (1) wt))
2= (fﬂg)jeQﬂ[OJ] of order |N|, basis bs o = b, b3 0 = ([O, 27 ’da:/27r)

ot — f3(t] cx=(r,0) €bsy— lg_g (r)rR(cosb,sinb),

Dot = fi(t] cx=0¢€by; — jR(cos (6 + wt),sin (0 + wt))

f* of order 1, basis by = b, :

fhit— f4t|: 2= (r,0) € by — rR(cos (0 + (1 —r)wt),sin (6 + (1 —r)wt))
The 4 coverings have the same subjacent invariant set-valued map : F : ¢ — oF (t) = B (0, R)
and are of C'* class.
The first two coverings are actually equivalent, the difference being just a singularity (see [2]) and
then the loss of information for F' is null in case of f!, negligible in case of f2. It is not the same
for 2 and f* where the loss is complete: only coverings are able to model these cases, set-valued
maps can not do that

Furthermore the assumptions of the theorem show the flexibility of the theory; actually,
neither convexity or neither connexity of the (subjacent) images nor global regularity of its
boundary are required so that, for example, a covering or a set-valued map is differentiable or
even of class C*, k < oo. A simple ezample:

Let E =R? ¢ >0, and (f;),_, , the following covering of order 2:

2
For —1 <t <9 : z— (fi(2] )12 of basis (2,0, ) v = (¢1,22) € b= [—1/2; 1/2] L dp = dz

hizlz) =y +ca, Vi f2(zlz) =y + (6(t)c + @ (1) car, o (1) caz)
with ¢, ¢ Urysohn’s functions such as: supp¢ C [0, 4-00[, @10 = 3; suppy C [0;6] @5 = 1/4
defines a set-valued map which models the following plan:

4
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In conclusion of these remarks I think that Coverings Theory is an efficient complementary
tool for Set-Valued Analysis but furthermore has a real capacity to create models at the same
time realistic and mathematically strong of complex phenomena as storms for example.

Remark: Existence and expressions of coverings of 6 F' or d,,F can be obtained by using
differential geometry tools |2] and Theorem 1.1.2 gives then coverings of F' without loss of
analytic properties.

1.2 Heredity and selections
1.2.1 Definitions

Let (t,y) —o F (t,y) a set-valued map of covering f;.
A selection ¢ of F' will be said a fj-associated selection if:
VI >0,3je€J/V(ty €l0,T]x0 : ¢(t,y) € f;(ty)
Their set will be noted S (f;) and S (F)that of selections of F'

Remark:

If f; is not time-dependent, for every j in J, f;(y| is obviously identified with
fj(t, y|l = fj(y|. Then the set S (f;) obviously contains time-independent selections ¢, i.e. such as
Jj € J/ ¢ (y) € cofj (y),Yy € O, but obviously not only.

1.2.2 Theorem of equiregularity

Let (t,y) —o F (t,y) a continuous set-valued map and let us assume that F' is locally
0-equiregular:
Y(to, yo),3U € V (to, yo) such as the family (f;(¢,y|,b;)7 € J, (t,y) € U is 0-(uniformly) regular,
then:
for each (¢,y), by any point z of F (t,y) cross a continuous selection:

{oty), o€ S(F)}=F(ty)

Proof:

Let f; a covering of F', we have then V (to,y0),2 € F (to,v0),3j € J,3x0 € bj/ 2 = f (to, yo|zo)
and then:

continuity:

Ve >0,3n > 0,m >0/ |t —tol <m, lly = woll <t = 1£5(t.yl = filto, ol |, <3
local 0-equiregularity::

Iy > 0,m5 >0/Ve> 0,39 >0:
|t —tol <m2, ly = woll <m, lz = zoll <0” = |[f (¢, ylx) — f (£, ylzo)|| < /3

A



Consider then the selection of F' t — f (¢, y|zo), we have:

VE>0,377>077 >0:
||f(t,@/|550) - (to,yo|fﬂo)|| = ({xeb ||x ~fc(,||<7,~} f{:ceb lz—zoll<n’'} ||f(t y|5”0> (t y[f)” d,uj (5)
+ (& yl — flto, yol |b 11; ({z€b;, ||, zol[<n}) j{zebj lle—ol|<n} 1 (t0, yolzo) — f (o, yol )| dp; ()

€ 1
<23 i ({meby,[la—woll<n’}) f{weijllw—woll<n”} dp; (£)- +‘ =€

The result follows.

Remark
It is obvious that if F'is totally continuous, i.e. admits a covering f; such as:

(t,y,z) € I x O xb; — f; (t,ylz), ¥y

then F'is locally 0-equiregular.

1.2.3 Theorem of barycentric selections

Let (t,y) —o F (t,y) a set-valued map with convex closed images and (¢,y) — f(t,y| an
internal dynamic of F of basis (b, ).

For any (b’ L ) sub-basis of b, (t,y) — fy (t,y) “(b, fb, f(t,y|lx) du(z) is a selection of F’

measurable, respectively (locally) integrable, y-locally Lipschitz, of C*-class (k < oo) if F is.
Such a selection will be said barycentric f-selection of F.

Furthermore, if F' is O-regular [2], for any (t,y), the set S (F') of its selections is such as:
{o(ty), o€ S(F)}=F(ty);
more precisely, for any covering f; of F', the set S (f;) of f;-associated selections of F is such as:

{(b(tvy)? ¢€ S(fJ)} :F(t7y>

Proof
i. Vz, f(z| € L(b) , u(V') >0 (See[2]): fiy(z) is defined and is a barycentric value of f (z|z) on
b'. As F'(z) is close and convex fi (z) is in F' (z) and so fy is a selection of F' such as

fo(2) €@f (2) C F(z),Vz

ii. If z — f(z| is measurable, it is the simple limit of measurable staged functions
z— g™ (2| = > lamg™ with Q" C I x O measurable such as  (€2; N Qy) = 0 for i # @' and
g € L (b). Then, for any z, Ym, i, /z € Q" and so f(z| = hm gi" in L(b) :

N g
|fb’ ('4) m| < ,u(b’) ‘f(‘ (b/)

So f; is a simple limit of measurable staged functions and then is a measurable function.

—gitl s — 0with ¢, =
) m—roo
iii. Assume that f is y-locally lipschitz:

V(to,y0), 30,6,k >0/ [f(&p1] = f( w2l |, < kllyr — el if ¢ —to] <6, [lyi —woll <e,i=1,2

Then:
| for (1) — for (£, ) || <

k
it Nl < i o = el



iv. [|fy (2)]] < ﬁ |f(2] |, and so f; is (locally) integrable, respectively continuous, if z — f (z|)
is.

v. Let z — f(z2| C* oo >k > 1. For 0 < j < k, we have successively:

FO4h] = FOG] + £+ ] (b / lim |e(zhl], = 0

k) = 10+ A b bl () / e < s T Je( ], =

. /! .
So £ is differentiable and 71 (2) = ( ,f,])> (2) = .= f9* (2)

vi. Let F' O-regular.

Ywy € F (z), 3f internal dynamic of F', 3zy € b such as f(z| continue on b and wy = f (z|x) .
Let: e >0and ' ={x € b/ ||x —xo|| <7 / ||f (z]x) — f (z]z0)|| <. We obtain then:

| for (20) — wol| < ﬁ Jy IIf (20]z) — wolldpe (z) < e and the result follows.

Corollary:

Let (t,y) — F'(t,y) a set-valued map of order at most countable with convex closed images.
There exists a sequence (¢ )reny of measurable, respectively (locally) integrable, y-locally
Lipschitz, of C*-class (k < co) selections of F such as V (t,y) € I x O, F (t,y) = Y ¢ (t,y) if
F is. B
Proof:

Let f; a covering of order at most countable of F'.
For each j in J it exists a dense sequence (xi) in b; and then the sequence of barycentric

selections ¢;  ,,, associated to {fj, bjem = B (xi, 1/m> nobj/jeJk>0m> 0} answers to the
question

Comments:

(1) This theorem and its corollary are in moved closer to the Characterization Theorem of
Borel-Measurability ([1], [3]) and the problem of eventual cases of reciprocity other than
measurability is open.

(2)In cases of measurability and (local) integration, selections and closed relations with
Borel-measurability and Aumann-integration have already been exposed in [2].

2  Cauchy-Lipschitz Theorems for differential inclusions

2.1 The fundamental theorem:

Let (t,y) € I x O —o F'(t,y) C E a continuous set-valued map with closed convex images,
Yo in O, and let us consider the differential inclusion:

() ¥ () eFty®), yO)=uy
Assume that F is locally Lipschitz in y (See |2]), then:
3,0<T <o00/3y:[0,T[— E, of C'—class solution of (I) for 0 <t < T
Furthermore, let Sp (yo) the set of solutions of (I), if F' is at least O-regular, we have:

{v'(0) /y € Sk (v)} = F(0,90)
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More precisely, let f; any covering of F' and Sy, (yo) the set of solutions deduced of the set S (f;)
of its associated selections, we have then:

{y'(0) /y €S, (yo)} = F(0,9)

Proof:
Following theorem 1.2.2, that ensues directly from the classical fundamental
Cauchy-Lipschitz theorem for functions applied in barycentric selection.

2.2 C* and parametric first order differential inclusions:

Theorem:
Let A an open set of R?, (t,y;\) € I x O x A —o F (t,y;\) C E a set-valued map with
closed convex images, yy in O, and let us consider the differential inclusion of parameter A:

(L) v (@) eF(ty);:N), y(0) =y
Assume that:
foreach Ain A, (t,y) —o F (t,y; A) is of C¥—class, 0 < k < 400

Then:
VYA € A, 3Ty > 0,3y, : [0, T = E C*solution of (I) VO <t < T,

Furthermore:
if (t,y;\) —o F (t,y;\)is of CP —class, 0 <h <k, (t,\) = y(t,,\) = ya (t) is of C*-class.
Proof:

If £ and O are respectively replaced by ' x R and O x A in 1.1.2, we obtain:

If (t,y;)\) = f(t,y;A|is of C¥ —class, 0 <k < +00, so are its barycentric selections.

The theorem follows then from the classical Cauchy-Lipschitz theorem applied in barycentric
selections of (t,y;\) —o F (t,y;\).

2.3 Differential inclusion of m order

Theorem:

Let (£, 4,21, oy Zme1) € I x O™ — F (t,y, 21, ..., zm—1) C Ea sct-valued map with closed
convex images, ¥o,Y1, ---, Ym—1 M arbitrary points in O and let us consider the differential
inclusion of m order:

(D) g™ @) € F(tyt), . y™ V() ;A); 4 (0) =gii=1,...,m—1
Assume that:
(£, 4, 21, ooy Zme1) —0 F (1, 21, ...y 2me1) is of C¥ — class, 1 < k < o0

Then:
31 >0/3y:[0,T[ — E, C*¥™ solution of (I) for0 <t < T.

Proof:



To (I) we associate the differential inclusion :
Y, € F(tv Y) ) )/0 - (Z/O; "'7ym—1)7

where (£, 4, 21, ..., Zm—1) =0 F (t, 4, 21, s 2m—1) = {21} X . X {zm_1} X F (£, 4,21, .., Zm—1) C E™
is of C*-class if F is.
Theorem 2.3 gives then:

Ir >0, I [0,T[ = E™, C* /Y (t) € F(t,Y(t)) for, 0 <t < T and Y (0) = (Yo, s Y1)

ie. with Y = (y, 21,y 2m_1) : ¥ =21, 2 =29, ooy, 20 1 € F(t,y,21, s Zm_1)-

The result follows.

3 Viability
3.1 Haddad’s Theorem

This first theorem, throw a lemma, replaces the set-valued map in the classical context of
Graphical Theory and is then just an adaptation of the fundamental Haddad’s Theorem:
Theorem:

Let F': R" — oR™ a continuous set-valued map of finite order with convex images and K a
locally compact subset of R".

Assume that F is locally 0-equiregular then K enjoys the local viability property if and only if K
is a viability domain of F.

Lemma:
A set-valued map of finite order continuous and locally 0-equiregular is Kuratowski upper
semicontinuous.
Proof:
(fj)k =1,...,kJ is continuous and uniformly O-equiregular: Ve > 0,3n > 0,3’ > 0 if
ly —yo| <, |z —x0| <,V € b; we have:

1FiGl = Fi(ol |, <3 rmand [|f (ylzo) = f (ylzo)| <Vj =1,..k

Let z in F(y), it exists j = 1, ...,k and z¢ in b; such as f;(y|zry) = 2. Let then zy = f(yo|zo), we
have zp € F(yo) and

(?Jlva) (?JO|~T0)|| > ,,,j({q;gb ||g; zoll<n' D) f{:ch llz—ol|<n’} ||f( |$O) (ylg)”dﬁ‘j (5)
+1fyl - (90| |b 11; ({z€b;, ||T zol[<n'}) f{qeb] llz—zol|<n’} 1 (wolzo) — f (wol&) Il dps; (€)

E —
= 2.5 (e, T al=7T f{mebj,||m—xo||<n}d/‘ (- +5=¢

Hence: Ve > 0,3 >0, |ly — wl| <n = F (y) C B(F (yo,¢)) and tha achieves the proof of the
lemma

Proof of theorem 3.1:

F' is then Kuratowski upper semicontinuous and furthermore has compact images:

Let f;, (bj, 1), 7 =1, ...,k a covering of F' and y, € O, we have:

Yy, F (y) = J_%J k&(y) = U f7 (y|b;) which is compact because f; is O-regular and then

..........

fi(y|b;) is the continuous 1mdge of a compact.
Hence all hypotheses of Haddad’s Theorem are verified and the result follows.

Comments: More generally the result of this lemma gives obviously an access to the numerous
theorems of Graphical Theory and Viability Theory based on Kuratowski upper semicontinuity.
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3.2 Viability theorem in Banach spaces

3.2.1 Preliminaries

(1) Let 0 < T' < oo, we denote X the space C° ([O, T[R’F, E) with its usual topology of
compact convergence; more precisely, for 7' < oo, X is then the Banach space
(C°([0,T7,E),|l|l,,) and for T < co and the Frechet space C? (|0, 00[, E) endowed with the

topology of locally uniform convergence.

Let K a convex compact of F.

The closed cover of any convex bounded subset of C* (Wﬂh, K) endowed with the C' compact
convergence topology is, following the Ascoli’s Theorem, a compact of Xr: It is indeed the closed
cover of a set of equicontinuous functions on mﬂh which set of values on each t; is included in
K and so relatively compact.

More generally, we will denote Krp any convex compact set of elements of X7 viable in K.

(2) Let F': Ry x O — oF a set-valued map of covering f; = (fj,b;, 11;) ;. , and a > 0.
For each j in J, we defined formally the set-valued map ﬁj by:

Fiv0exr—o {tou )= [ £ rum)dr, G e |

where: b (a) = {(x,7) € b; x [0,1] / B (2,r) C b;}, fjr = p; (B (z,7))

xT,T ]'
F57 (b y) = /_ £t yl du,
gy

B(xz,r)

and the set-valued map F' by:

Fry()€Xr—om U F(y()

3.2.2 Theorem:

Let F': Ry x O — oF a set-valued map with closed convex images of covering
fr=(f; bj’:uj)jej and « > 0.
We assume that F' is locally strongly continuous i.e. the covering f; is a locally equicontinuous
family.
Let K a convex compact of £ and y, € K:

If it exists 0 < T < 0o, a > 0 and K7 such as the set-valued map yo + F is either inward or
outward on K, then it exists y () € Xy of C* class, viable in K, and such as:

y(0)=w, Y () eFty®)vt ()

Proof:

Step 1: y() —o F (y()) is defined on X7 with (closed convex) images in X7
— R,
[

Vy () € X;,¥j € J,Y (x,r) € bj(a), y;" () is defined and continuous (actually C') on [0, 7’|
because ff " is a barycentric selection of a continuous set-valued map with convex closed images
and then is continuous, hence so is 7 — [ (7,4 (7)).

Step 2: F' is hemicontinuous on X
Let yx () = Yoo () and u € X/ dual space of Xr.

mn



(1) Let assume first that 7' < oo:
We have: Vk,Ve > 0,32, () € F (yx () : 0 (F‘ (yr () ,u) < <u,z () >+

Then: Jz, () € co (jgj Fy (yw ())) 2k () = 2, Ol < msuchas [<wu, 2 () — 2, () >| <5
and then: o (F (), u) << u,2,() >+ 24

2. () = Z:l)\,,;zi (), with \; > 0,Vi =1,...,m, and > \; = 1, Hence

i=1

m
<u,z, () >= Zl/\i <u,z() >< max <u,? ‘() > and then:
=

.....

Vk,Ve > 0, EIjkEJElzj’c € F(ye () : U(F(yk()),u> §<u,zj’€()>+25/3

We have: 29+ ( fo fiETE (7, (7))dT for a suitable (g, 1) € by, (@)
Let us Con31der 2, () € F]k (Yoo ()) defined by: z;, (¢ fo [ (1, Yoo (T))dr,
we have:

127 (8) = 23 (DN < Jy 75 S 1 (7o ()| = £ (790 (7) |l dm
< Lo, v (7)) = Jie (T Yoo (T) [, 7
Hence, following (2): Vk > k. such as||yx () — yoo Ollo. <1 <1
‘fjk(Tvyk(TH _fjk(T yOO( )||b _3T,VJGJVTE[0 T]
27k () — 2, () 1 fo s&dr < &/3 and finally:

Ve > 0,35k € 1,32, €Fj, (Yoo ) € F (oo (), 3k
VE > ke, U(F’(yk()),u) <<uz 0>+ <u (V=2 ()>+2h3 < <z, () > +e

Hence: Ve >0, 3k. :Vk > k., o (]5 (ye () ,u) <o (F (Yoo () ,u) +e:
and then: lim sup o (F (yx () ,u) <o (]5 (Yoo () ,u) which achieves the proof of step 2.

n—oo

(2) Let assume now that 7' = oo, the same preceding proof applied to T’ < oo establishes then
the validity of the limit inequality on any convex compact vicinity of [0, oo[and then proofs the
searched hemicontinuity inequality.

Step 3: final proof of theorem.
The theorem ensues then directly of the classical Equilibrium Theorem applied in the
set-valued map F + yo for suitable values of T',  and choice of compact K.

Comments:

(1) If the set-valued map F' is strongly locally bounded,i.e. the covering f; is a locally
equibounded, which is equivalent to locally bounded in sense of the Graphical Theory, any y()
viable in K and solution of the differential inclusion (I) is element of a set K of C'' bounded
type. (2) Any set-valued map continue and of finite order is obviously strongly continue.
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