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Introduction
As said in the Abstract, we first recall a main and classical result from the reference
book |6] Vorticity and Incompressible Flow , §3: Energy Methods from A.J Majda and A.L
Bertozzi , that we will both slightly strengthen and enlarge (non homogeneous equation) on one
hand and, on the other weaken by a lost of generality,our framework being more restrictive:

constraint in the Schwartz functionnal space and vorticity in the kernel-set H>/ = N OHWf of
m =

Sobolev spaces The proof of this new form of our starting result is closely similar for a very large
part to the proof of the original result established in [6] p 96 to 112. Likewise, that of the kinetic
energy inequality, necessary in this work, in its processes, is similar to that of the usual kinetic
energy equality [2| p 5. So, we will not give detailed proofs of these results, but only reference
proof elements step by step and leave to the reader an eventual completed detailed re-writing.

In a second part, we will aboard the proof that the obtained solution is global-in-time
using processes based, on the one hand, on Hilbert Theory and Heat Equation Theory, on the
other, on a original method of break and rebuilt as we will see then.

Finally, in a third part, we will complete this work determining the stability domain of
the Leray projector in the space of Schwartz functions and, so, obtain a kind of optimality of the
preceding result.

Notations:
Let NeN, N >3

1. Spatial derivatives 9%, 5 € NV are a priori in the distribution sense and the time
derivative 0, always is in the Fréchet sense. (Notation from [2])

2. Q an open subset in R™: C*(Q) = C* (Q,RY), 0 < k < 400
For m = N, Q = RY : C* (Q) will be denoted C'*

3. Lebesgue spaces [7], [8] :

LP = L? (RY,RY), 1 < p < oo, norm: |wlrs
4. Schwartz spaces [8] :

S=S5RV,RY), 8 ={weS/divw=0}
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semi-norms systems: (1) |w|™™ = sup ’(1 + \x|2)z OPw (I)‘ , ,m=0

|Bl<m L=
(2) |w]|™ = sup 220 w|, . ,m >0
max{|al,|5[}<m
S0, 77) =S ([0, T*[ x RN, RN); 0 < T* < +o0
semi-norms system: ||w||"™ = sup ‘(1 +t+ ]33\2)1 A 0w (x)’
J+IBI<m Le

5. Sobolev spaces 6], 8] and Leray’s projector |2], |6]:

H™ = H™ (RN, RY), norm: |[[[,,, m >0
For all m > N/Q, H™ is a Banach algebra and ||v.w]|,, <c. |, ||w],,

Hodge theorem:
div (Pw) =0

P:we H" — Pwe H™ X
v v /o = Pw+ Vo

1Pwllm < |[w]lm, H™ = PH™

Fourier expression of P :
.k
Pw = (L.@)" with ,* () = (5jk _ e ) 2]

]

where w — @ and w — w" are the Fourier and co-Fourier transforms [1], |8|

I. Local-in-ttme Existence Theorem:
We define first the followings sets:

H*/ = n H™ & H™ ={weH™/divw=0}/ 0<m< +o0

m=0

C*(0,T*[,H®)= n C*(0,T*[,H™) / 0< k<400, 0 <T* < +0c0
0

m 2z

Our reference results are the following:

2] p 5: 1.3.2 Energy equality : if ug € H%/ and u € C1([0,T*), H*/) are such as:
u(0,) =0, O —vAu+ (u.Vu) =0 then u verifies the Energy equality:

t
Vi e [0,T%), Yolu(t, )2s + / Vu(s, )Eads = 1 Juol2s

[6] Theorem 8.4 p 104. / Corollary 3.2 p 112: Given an initial condition ug € H™/,
m = [N /2} + 2, then for any viscosity v > 0, there exists a maximal time of existence 7™

(possibly infinite) and a unique solution u € C°([0, T*), H™ /)N CY([0,T*), H™ %) to the
Navier-Stokes equation w(0, ) =0, Ju —vAu+ (u.Vu) = 0.

We have to note that in this result 7% depends from m and that is the core of the problem to be
solve.
We will modify these results as it follows:



Theorem I.1: Enerqgy inequalities
Let 0 < T* < 400, 0 <m < +oo, ug € H™/ f € S(0,+00), v > 0, and
ue Ct([0,T*[, H™') such that:

Owu—vAu+ P (u.Vu) = Pf

then u verifies the energy inequalities:

t t
1/2|u(t7)|3,2+y/0 ‘VU(S,)’iQng/O ‘U(S,)|L2 ‘|F)JC(‘97)|L2dS+1/2|u0|i2 (Eq]l)

0<t<T™

sup |u (¢, )]z < 2/ [Pf(s,)|12ds + [uol 2 = Euo.p) (Eq.1.2)
s=>0

reference proof elements:

(Eq.1.1): 2] p 5.
(Eq.1.2):
t — u(t,) is continuous from [0,7*[ to L? and [ _ [Pf(s,)|,.ds < oo if f € S(0,+00), see [8],
the processes used in [2] give us immediately:
VO <t<T",( sup (s, )]g2)? =2 (fs>o [Pf (sl dS) (Sl[lp] [u(s,)l2) — luol72 < 0
s€(0,t s€l0,t
and the result follows.

Theorem 1.2 : Local-in-time existence For any initial velocity uo € H >/ and external
force f € S(0,400), there exists one maximal interval [0, 7*[, 0 < T < 400 and one and only

one u € C'' ([0, T*[, H>') such that:

(1) Vte [0, T, divu(t,) =0

(12) u(0,) = ug
(i) sup fu(t)], < oo
t €0, 7]

(iv) Ou—vAu + P (u.Vu)=Pf

Furthermore, we have then:

sup |u (t,)]r2 < Epug,p) = 2/ |f (s,)]2ds + |uo| ;2 < o0
t €[0,7*] s=0

vVt e [0, T, u(t,)ECO":{wECOO/ lim aau(t,x):O,Va}

|z|—+o0

reference proof elements: [6] p 100 - 112:
first step: the reqularized equation:

The regularized equation considered here is time-dependent (second member f(t, )), so, the
Picard theorem is inadequate and has to be replaced by the Cauchy-Lipschitz theorem; that does
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not change the structure of the proof. The upper bound sup [v®|,. < E (uo, f) obviously
o<t<T
replaces sup |v¢| . < |ugl 2 in ref. Eq (3.53).

Similarly to the reference, given that f belongs to S(0,c0), see [8], we have the bound:

d
o 1™ A o < e (B (uo, f) ) [w™ ™ |y + 11 (8 A, < € (B (o, £, €) [lu™™,,, + & (f,m)

and then, easier here than Groiiwall lemma, the general differential inequations theory, see |7]
§V, gives us

d
[u™ (TN, < 0T & = Jus™ (TN, < cae™ + k=M

[

The globality-in-time of each solution u*=™ follows and we have then, for all m, u®™ =u® € H*
second step: the local-in-time solution:

The insertion of f in the calculus modifies the "H™ energy estimate", [6] Eq. (3.58), as follows:
3l > 0,2 > 0:ve >0,

ld 12 (12 € €12 €
5z 1l + v 11Vl < ) IV Il oo UE 1, + 3 [0l (EqI.3)

Here, we reach the point where we have to solve the problem of the time-dependence of
time 7™ and, for that, momentarily to diverge from the reference proof and, hence, to give a more
explicit proof of this step:

Given the Sobolev Theorem, we have: [J.Vu©|; o < |Vu®| o < C |lu]],, < Clu]],, for all
m=my = [Np| +2>Np+1 (BqL4).
It follows then from (Eq 1.3):

1 2) .

for m = my: L[us]],, < Cchl |l ” + cons e luc]l, < ky (e, +1) and,
hence, integrating ([6]§V II): 3Ty = ﬁ (Z — arctan ||u0||mN) > 0, such that

VT < Ty,sup |[u® (t,)]],,, < tan (ky.T + arctan (||u0||mN)) = Mrp < 400

t<T

So, we obtain in (Eq 1.4): Vm > my, |J. Vu©|; o < CMyp (Eql.5)
Then, similarly to [6], ref (3.59), it follows from (Eq I.3) that: £ [|u®]|,, < ) My us|l,, + )
Using Gronwall lemma, we obtain then:

IMy = M'(T,Ty,m) >0, sup |[u° (t,)]|

te[0,T]

<M, (Eql6)

m

i.e., likewise to the reference proof, it follows that, for all m > my , the families (v°) and (dus/dt>

are both uniformly bounded in C° ([0,7], H™) and C° ([0, T], H™?) respectively, for all T < Tl.
The continuation of the proof is strictly the same as the reference proof, but always taking
into account that the convergence towards the solution is obtained on [0, 7| with T (dependent

only of N), for all m > [N/Q} + 2.
Hence, T™ is also independent of m and the local solution belongs to

n (oo, 7, H™ )y nC' ([0,T*[, H" 7)) = C* ([0, T*[, H>)

mZ=mpy



The last results follow immediately from Energy theorem and Sobolev theorem
II. Globality-in-time of the maximal solution

Theorem 2 .1: Under the hypothesis of Theorem 1.2, the solution wu is defined and
smooth on [0, +oo[ x RY

proof of Theorem 2.1:

Let us assume now that 7% < 400 and let T* < T < 4o00. Theorem 1.1.(Eq 1.1) gives us:

t t
1
[ 190 Gieds < [Pl ()]st 5 ol ve > 0

and then, using the energy bound sup |u® (¢,)|;2 < E(u,,s) and the inequality |[Pw]|, . < |w|, 2 [6],
t >0

we obtain:

—+00 “+o00 1
/ Ve (5[} 2 ds < Eug.p) / £ (s)lpads + 5 luolze = ey gy (Eq2.1)
0 0

It follows that the sequences (u®),e > 0 and (0,,u°),i = 1,...N,e > 0 are bounded in the
Hilbert space L? (]0, T[ x RN). Hence, following the Alaoglu ’s theorem, it exists
U : 10,400 x RN — RY and U,, : |0, +oo[ x RY — RN 4 =1,...N such that (u¥),e > 0 and
(Op;uf),i=1,...N,e > 0 weakly converge to U and U,,,i = 1,..N, in L? (]0,T[ x RY)
Furthermore, it is then clear that Uy, = 0,,U,i =1,..N i.e VU = (Uy,),_, y and that
Ul(t,) =ul(t),vt <T* (Eq2.2)

We have, for all 0 < ¢ < T, U(t, ) and VU(t, ) € L? (RN), so PU(t, ) and VU (£, ) belong to
L? (R") and then:

L —

P(U(t,).VU(t,))=PU(t,)x VU (t,) € L= (RY) :

Let Fr the function defined by:
Fr(t,) = Pf(t,) — P(U(t).VU (t,)) if t € [0,T], = 0if ¢ ¢ [0, 7],
then it follows from (Eql.2) and (Eq 2.1) that:

—

|Prl sy = [PU(6) VU (1)

L™ (RN+1) sIpu (t)‘LQ([O’T]XRN) ' IVU L?([0,T]xRN)

ST tS[%PT] U (O] 2@y - IVUI L2 (o gyxrny < T-E (uof) € (uof)
elo,

Hence, Fr belongs to L* (]O,T[XRN) and, furthermore, for all ¢ < T*, since then U(t, ) = u(t, ),
we have Frp(t, ) = Pf(t, ) — P (u(t,) .Vu(t,)).
Let now G the Gaussian kernel:
1 - ‘I|2/ . N .
G(t,:c):—Ne dvtif t >0,z cRY, = 0ift <0.
(4muvt) 12



Following [1], [3|, if 1 = G *(12) (Frr) and Uy = G *(y) (uo — 1 (0,)), then @ = U + Uy is solution
to the Heat equation:
ow — v Aw = Fp(t, )Vt > 0,2 € RY

w (0,) = g

(2.3)

As, furthermore, all derivatives of uy are both smooth and bounded, it follows from properties of
the Gaussian kernel that: (2.4) @ is smooth on [0, 7 x RY [1].[3]

On [0, T*[, we have U(t, ) = u(t, ) and then this equation is written

ow—vAw=Pf(t,)—P(u(t,) . Vu(t)) YO<t<T* zcRY

w (0,) = wug

Hence, u, maximal solution to the Navier-Stokes equation, and w are two solutions to the
restriction to |0, T*[ x RY of the equation (Eq 2.3).

Let now 0 <T' <T* <T, k>0and Q = {z € R, |z| <k }.
It follows then from Theorem 1.2 and (2.4) respectively that, for all ¢ € |0, 7"[, u(t, ) and u(¢, )
belong to H'o(Q4,) = H'(Q4) since €, is a bounded open set with a piecewise smooth boundary,

[5].

We have then, for all ¢t € |0, T"[:
(u—"1)(t,) € Hy (), Oy (u—1) (t,2) —vA(u—1)(t,z) =0, Vz € Q and (v —7) (0,) =0
It follows then:

|| @te=m = @=myards = Yoltw =) )lixg, v [ 19 =) ), e =0

and hence: u (t,z) =u(t,z), Vt <T' Vx € Q, VO <T' <T* Vk >0
We have hence: u (t,x) =7 (t,x), Vt € [0,T*[,Vx € RY and from that we deduce then:
(i) u belongs to C'*> ([0, T*[ x RY)
(ii) u can be smoothly extended to [0,T*] setting u(T™*, ) = w(T™, ) whih contradicts the
maximality of 7" and hence: T* = +o0.
The proof is completed.

IT1. Optimality:

In the following classical decreasing sequence of functional work-spaces, in which we
have obviously inserted the space H>: H™ D H* D S D D, S is the largest space included in
H *° and we are going now to be interested in the following question : if the initial velocity wug
belongs to S, does the only solution u to the Navier-Stokes equation belongs to
C*>([0, 4+o00], S7)?, this space being defined analogously to C*([0, +oo[, H°>7) (S is a nuclear
space).

Unfortunately, We will see that such a refinement is impossible.
For that, We will first characterize the stability domain of the Leray’s projector on S (Theorem
3.2) and next deduce from it the above impossibility.
The main theorem of this part is:

Theorem 3.1: (Optimality Theorem)
For any initial velocity uo in S/, there exists external forces f in S(0, +00) such that
the only solution u to the associated Navier-Stokes equation does not belongs to the set
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{we ([0, 400 x RY) Jw (t,) € S, 0w (t,) € S, Vt >0} and the set of such external forces is
dense in S(0,400).

Theorem 3.2 (Stability domain of the Leray projector): Let w in S, then its Leray’s image
Pw belongs to S if and only if all moments of its divergence are null.

Lemma 3.1: w:RY — RY belongs to S if and only if one of the following equivalent properties
is verified:

(a) 220w belongs to L? for all o, 8 in NV

(b) 0%(2Pw) belongs to L? for all a, B in NV

Proof of lemma 3.1:
The equivalence of properties (a) and (b) follows immediately from the equivalence of the
= sup |07 (:1c°‘w)|Loo (see[T])

max{|af,|B[}<m
If w e S, we have z20°w € S C L? Va, .
Reciprocally, let us assume that w verifies properties (a), (b) and let ¢ = @.
We have then: 0 (mﬁgo) = Capr®0Pw € L? Yo,  and hence, it follows from Sobolev’s theorem
that:

semi-norms systems |w|™ and |w|™

Vi >0,Ym >N+ k8, 18 <m: 2’pe H™ <> CF ([1])
ie: |$6<,0|Ck = sup !80‘ (Xﬁgo)}mo <cm,kHX5g0Hm,V5,|5| <m and then:
0

laf <k

a (.8 3 _ B~
e (07 (#9)] < ema sup [[o70],, = e s 7],

=

—_— 2
=), 1 Sup Hf)ﬁwH < . sup Z |270°w|,, | < oo
m

) gk ) gk
il 81<k \ | <m

As k is arbitrary, we deduce that ¢ and then w = " belong to S.

Lemma 3.2:

o (XX Qapr (X) . o Bk
ve, 0 ( ’X’z ) N X 2(al+1) 2 with Qo g (X) = 2 : 4" X7
| X] Ipl=Blal+1

Proof of lemma 3.2:
We will proceed by induction on |af:

|a| = 0: the formula is trivially true.

Assume that, for one fixed k, the formula is correct for any «, |a| = k.
Let then o, |a| = k+ 1: o = a* + 9§, with |a*| = k and we have:

oo (TB‘”’“> — 9.0 <90’31‘k>  9;Qas i (2) 2] = Qae gk (2) 211225 Qapi (w)
= 0, _ _

2(la* [+ 1)+1 2(lal+ 1)
|| X

2 2
] |

and it is clear that: Qu g% (z) = > qgéﬁ,kXp
lpl=(lal)+]8]+1

Proof of Theorem 3.2



It follows from lemma III.1 that: Pw € S < 2°0° Pw = 2*P0%w € L? Vo, B
Since Pw = (#div w) 2], and 0% Pw = Pd°w [6], we obtain then:

PweS < r®PPwel? < (80‘ (%d@w)) e L?
T

B o~ — — —
& 0 (T—';Udiv w) e L? since div 0%w = Pdivw = (—2inz)’ divw
T

First, we can deduce from (//.1) that, for |z| > 1:

a° (f_\) divw (@‘ < ‘QQ,M (2) divw (z)
and hence:
$ﬁ$k

]¢m>§aa < ||2 ) &Z;;b(lﬂ S LQ,Vé >0
x

On the other hand, we have the following alternative (a)/(b):

(a) There exists at least one moment [ 2™divw dx of divw which is not null and without
loss of generality, we can then choose 79, such that |7| is minimal.
Hence, we have then:

o™ div w (0) = (2im)™ [ 2™divwdr =m, #0
O divw (0) = (2im)” [a"divwdr =0, Y7/ |7| < |70

Let then («, 8) = («,0), it follows from lemma 3.2 that, for 7, < a:

(T Qo—rp0.k (7)
HY—To ( ) = | T2<$ITO|H), Qa—mok (X) = Z q;"o’kxp
X

jaf*

lol=la|—=[mol+1

and hence we obtain, for |z| < 0 << 1

X — 1
oY (—| k ) odivw ~ ————— Z qz"o’krlo“_WHTp (0) Mo,

2 (lal—Trol+1)
X 72
| |p|=|e|—[70]+1

< P () plol-imb—alei-iuis
T0
where Ty, (0) is the trigonometric polynomial such that:

2 =7, (0), 0€Q={0=(0,...001) ERNY/ =T < 01,....,0n 2,0 < Oy_y <27} [7]

Hence, we have the integral convergence equivalence:

/|x<6

2 DN 2
dx ~ / oo (PTO (8) 71|04‘—|T0‘+1—2(‘a|_‘70‘+ )) w (9) T’N_ldT d6
0<r<d,0¢c

geo <ﬂ) o™ divw (x)

]

_ / N2 Jal |2l o) / Py (024 (0)d0 (11.2)
0<r<é e

It follows then that 9~ (%) o™ div w (z) belongs to L? if and only if

N +1+2(Ja| = || = 21y >0
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and likewise for any 7 < o/ |7g| = |70], my # 0

Let |a| minimal such that N + 1+ 2 (|a| — |r| — 2/*=™I+1) <0, we obtain:
(i) Fory=1{+p<a:

N+1+2 (\ay — |+ p| — 2‘“'—|76+P\+1> = N +1+2(la—p|—|r|) — 2lerl-lnl+1 > g

We have then convergence for the integral (//.2) which m, be null or not.
(i1) For v < a, |y] <mol:

|z]

y<a, [y[<]|mo| y<a, |yI<] 7ol

a|—|ro|+1—2lI=I70l+1
rlal=Imol Py (6)

t5]=r

since |a| — |y + 1 —2=PH (7] = |Y]) = || — 70| + 1 — 2171+ (¢ — g — 29 is decreasing)

Hence:
2
[, i~ |
|z|<é || <&

lyI<Imol
It follows then from the Leibniz formula that the integralﬁx‘d

2

dx

8o (I—) & divw (x)

]

g (x_) o™ div w (x)
jaf?

0“ <%m (x)) ‘2 dx is

divergent and hence, from lemma II.1, we deduce: 9% (;’ﬁm (:1:)) ¢ L? and then Pw ¢ S.

b) [x*divwdr =0, Va:
We have then 9°div w (0) = 0, Va and hence Ya, 0° (80‘%\10) (0) =0, Yp.
It follows: 9°div w () = o(|z]™),Va € N¥ ¥Vm > 0 and hence, we obtain by the Leibniz formula:

B — B —
0* <X dew) () = an,pap (a: €k> 0%divw (z)
X [* K | ]

psa

Q k a7 m
Z ap’p‘f(am) %divw (z) = o(|x]™),¥Vm

P

It follows then that 0¢ (XX‘Qde w) € L?Va, 8 and lemma I1.2.1 gives us: Pw € S which

achieves the proof of theorem II1.2
We have then the following immediate consequences:

Consequences 3.1: The Stability domain is a closed and meagre (|4]) strict vector
subspace of S which is stable by derivation and such as:

Yo € st(P),Yw € S, vxw € st (P)

We can now prove the optimality theorem 3.1 :



Let (ug, f) € S7 x S (0,+00) and let us assume that the solution u to the associated
Navier-Stokes equation belongs to {w e(C®™ ([O, +oo[ x ]RN) Jw(t,) €S, 0wl(t,) €S, Vt> O}.
We have then: P(u.Vu— f)(t,) =vAu(t,) — dwu(t,) € S and, in particular for ¢t = 0:

P (Uo.VUO - f (0,)) € S

It follows then from Theorem 3.2 that

/xadiv (ug.Vug — f(0,)) de = 0,Va

and this non-trivial condition contradicts the assumed independence between the initial velocity
and the external force and, so, proves the first assertion.

Let us assume that wu is solution in S in the sens given in the above theorem for the
constraint (ug, f) and then that: [ 2z®div (uo.Vue — f (0,)) dz = 0, Vo

Let then for example g € S(0, +00) defined by g (¢, x) = e_t_|x|2, e>0, fo=f+egand
a=(1,0,...0):

/xo‘div (up.Vug — f-(0,)) de = /xadiv (uo.Vuof (0,)) dz —5/x1divg (0,)dx #0

J/

-~

=0

Hence, for all ¢ > 0, there is no solution in S for the constraint (uo, f-) and, furthermore,
hI'IlO (u07f€) - (u(]af) in Sf X 5(07 +OO)

g —

which proves the density.
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