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Abstract :The initial aim of this essay was to try understanding the reasons to the apparent discrepancy between

the theoretical and �observed� behaviors of the Hubble parameter that appeared recently: always decreasing in the

�rst case, decreasing then increasing in the second. This research �nally brought us to build a cosmological model

of periodic cosmos reconnecting with the ancient wisdom of the quotation given at the beginning of this essay.
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Introduction
The last determination of the Hubble parameter shows a discrepancy between the

variations of the exact solution to the Friedmann-Lemaître equations and the observed variations:
after being decreasing for a long time, the Hubble parameter is now increasing (cf [2] [1]) and
that is not compatible with the variations of the exact solution which is decreasing for all time τ .

The Friedmann-Lemaître equations are written in cosmic time τ , proper time of the universe
line T of any Cosmic Observer, [3], but, on the other hand, the experimental determinations of
the Hubble parameter are done relatively to �earth time�, denoted apparent t in this essay. This
identi�cation of these two times, not speci�ed but nevertheless e�ective in the �rst section,
actually supposes that dτ

dt
= 1 for all t, i.e. that T and the one dimensional Euclidean space R be

isometric and not only smooth homeomorph . We will envisage here that it is the cause of
discrepancy and that the identi�cation is only and approximatively possible for �small� times.

Guiven the quotation given at the beginning of this essay to which we subscribe and the
incontestability of the Standard model, this path will brings us to postulate that the cosmic time
curve is a periodic curve and then to de�ne it and do a �rst study of its consequences and their
compatibility with experimental observations and Standard Model.

Preamble
We will systematically consider here a space-time

of zero spatial curvature
which admits a singularity in its past (Big Bang)
dominated by a constituent governed by the state equation p = ωc2ρ

Notations are those of [3] and all this essay is based on thr following postulate:

1st Postulate :Any singularity of the space-time is the expression of a mathematical
singularity of the solutions to the Friedmann-Lemaître equations and vice versa.

1.Solutions to the Friedmann-Lemaître equations

This essay being totally based on the Hubble parameter, we need �rst determining its
intrinsic expression.
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In the framework speci�ed in preamble, the Friedmann-Lemaître equations are written ([3]: p
198): ∣∣∣∣∣∣∣∣∣∣

( •
a

a

)2

=
8πG

3
ρ+

c2Λ

3

••
a

a
= −4πG

3
(1 + 3ω) ρ+

c2Λ

3

Expressed relatively to the Hubble parameter H =
•
a
a
, they are then written:∣∣∣∣∣∣∣∣

(1.1)H2 =
8πG

3
ρ+

c2Λ

3

(1.2)H2 +
•
H = −4πG

3
(1 + 3ω) ρ+

c2Λ

3

and we deduce immediately from (1.1) and (1.2) the complementary equation, [3]:

(1.3) :

•
ρ

ρ
= −3 (1 + ω)H

1.1 Solving the Friedmann-Lemaître equations:
We assume that ω ̸= −1 and we initialize classically the unknowns at time 0, origin of

cosmic time corresponding to the date of the last determination of the Hubble parameter.
(1.3) and (1.2) give us immediately:

ρ (τ) = ρ0 e
− 3(1+ω)

∫ τ
0 H(s)ds , ρ0 =

3

8πG

(
H2

0 −
Λc2

3

)
(1.4)

Insertion of (1.1) into (1.2) gives then
•
H = −4πG (1 + ω) ρ and next

••
H = −4πG (1 + ω)

•
ρ

Hence, given (1.3), we obtain :
••
H
/

•
H =

•
ρ
/
ρ = −3 (1 + ω)H ,i.e.

••
H = −3/2 (1 + ω)

•
(H2) (1.5)

It follows then from (1.4) and (1.2) that:

•
H =

−3 (1 + ω)

2
H2 +

3 (1 + ω)

2

Λc2

3
(1.6)

Let H = h+ β, β =

√
Λc2/3 (1.9), we obtain: −

•
h
/
h2 = 3 (1 + ω) β1/h+ 3/2 (1 + ω), i.e., with

χ = 1/h,
•
χ = 3 (1 + ω) β χ+ 3/2 (1 + ω) and then: χ =

(
1/2β + χ (0)

)
e3(1+ω)β . τ − 1/2β

From that, we deduce immediately, given H (0) = H0:

H (τ) = β
(H0 + β) e3(1+ω)β . τ + (H0 − β)

(H0 + β) e3(1+ω)β . τ − (H0 − β)
(1.7)

Note : This formula remains correct for ω = −1 : Hω=−1 (τ) = H0, ∀τ
Furthermore, we obtain then immediately:

•
H =

−6 (1 + ω) β2 (H2
0 − β2) e3(1+ω)β τ

((H0 + β) e3(1+ω)β τ − (H0 − β))
2 (1.9) , ρ =

3
2πG

β2 (H2
0 − β2) e3(1+ω)β τ

((H0 + β) e3(1+ω)β τ − (H0 − β))
2 (1.10)
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1.2 Condition of positivity and singularities::
As H > β, cf(1.1), H(τ) > 0 is equivalent to:

(1 + ω) τ > (1 + ω) τω with τω =
1

3 (1 + ω) β
ln

(
H0 − β

H0 + β

)
(1.8)

Basic cases:
ω > −1:

ω = 0: Universe dominated by dust gas / ω = 1/3: Universe dominated by radiations
H is de�ned and decreasing for all τ > τω. τω is, a priori, the cosmic date of the Big Bang
relatively to the chosen time origin.

lim
τω

H = +∞ , lim
τω

•
H = −∞ & lim

+∞
H = β =

√
Λc2

3
, lim

+∞

•
H = 0

The Universe is in perpetual extension.
ω = −1: Universe dominated by emptyness.

H (τ) = H0, ∀τ ∈ R: the Universe is uncreated, with no singularity and then not admits a Big
Bang following the �rst postulate.

ω < −1: Universe dominated by exotic matter ( R.Caldwell - A Phantom Menace?
Cosmological consequences of a dark energy component with super-negative equation of state;
Physics Letters B, no 545,? 2002)
H is de�ned for all τ < τω:its only singularity is in its future and not in its past and, hence,
Universe without Big Bang.

More generally, if we consider an Universe of constituents i = 1, 2; .../ pi = ωic
2ρi, the

Friedmann-Lemaître equations are unchanged setting ρ =
∑
i

ρi et ω =
∑
i

(
ρi/ρ

)
ωi

Furthermore, it is proved (cf [2],[1]) that the only case corresponding to all our required
conditions is ω > −1/3 and not ω > −1. We will �nd again this restriction in section 2.5. and
admit it for the moment.

2.Draft of a periodic Cosmos

In the continuation of this essay, we will always suppose that ω > −1/3
Furthermore, in order to avoid any ambiguity, we will reserve the notation

•
w to the derivation

relating to cosmic time and will denote w′ that relating to apparent time.

2.1 The Cosmic time Curve As announced in the introduction, we assume
here that the discrepancy appeared in the evolution of the Hubble parameter is due to an
impossibility to identify cosmic and apparent times for all time and, to solve this problem, that
bring us to build a model of periodic Cosmos as it follows:

2nd Postulate :the most fundamental curve of Astrophysics, the ellipsis, necessary
emanates from the most fundamental curve of the Cosmos, its Curve of (cosmic) time T .

Given the irreversibility of time, we deduce then that the in�nite Curve of time T is the periodic
elliptic curve de�ned below:

Let (O,
−→
i ,
−→
j ) an orthonormal system of R2: coordinates (x = ct, y) and 1 << T .
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We denote T0 the half ellipsis de�ned by:
(
t/T

)2
+ y2 = 1 , y ⩾ 0 and, subject to consistence, we

will consider that:
T0 is the curve of time corresponding to our Universe.

The axis
(
O,
−→
i
)
is the apparent time axis (modulo c )

then:
t = −T (x = −cT ) is the apparent �birth date� of our Universe (Big Bang) and t = T (x = cT )
is the apparent date of its �death date� (Big Chaos / see 2.5 )

Let P : t ∈ [−T, T ]→ (ct, y(t), with y (t) =
√
1−

(
t
T

)2
(2.1) the natural setting of T0.

We de�ne then the curve of cosmic time T in its totality as the periodic curve of setting
P : t ∈ R→ (ct, y(t)):

y (t) = y (t− 2kT ) if t ∈ [(2k − 1)T, 2 (k + 1)T ] = [tk, tk+1] (2.2)

P is a homeomorphism from R on T which points of apparent time tk = (2k − 1)T, k ∈ Z are
cusps.

If t is an apparent time and τ(t) the cosmic time, proper time of T , which corresponds to it, we
have:

τ andt exactly coincide only at their common origin O.

τ(t) = τt =
∫ t

0
γ (s) ds with γ (t) = dτ

dt
=
√
1 + y′ (t)2 (2.3)

Furthermore :
∀t : τ (−t) = −τ (t)

if t ∈ [0, T ], τ (t) = T.
∫ Arc sin

(
t/T

)
0

√
1− e2 sin2 α . dα with e =

√
1−

(
1/Tω

)2
(2.4)

τ() : t→ τt is a homeomorphism from R onto itself, and a smooth di�eomorphism from
R− {tk, k ∈ Z} onto R−

{
τ k = τ (tk) , k ∈ Z

}
The Cosmos, or global Universe, is then de�ned as the in�nite succession of (local)

Universes Uk, k ∈ Z, each equipped with the FLRW metric of zero spatial curvature for the
coordinates system (τ, r, θ, ϕ) , τ ∈ ]τk, τk+1[:

gα,βdx
αdxβ = − (cdτ)2 + a (τ)2

[
dr2 + r2

(
dθ2 + sin2 θ dϕ2

)]
completed by the state equation p = ωc2.ρ, ω > −1/3

The Cosmos would be then uncreated, in�nite succession of (local) Universes spatially
homogeneous, isotropic and identical for great scales, of same half-life T in apparent time and∫ T

0
γ (s) . ds = T

∫ π/2
0

√
1− e2 sin2 α dα (2.5) in cosmic time; we will denote it T .Στ

We have now to justify interest and consistency of a such cosmological model:

2.2 Hubble parameter in cosmic time
Obviously, the Hubble parameter is here initialized relatively to the (common) absolute

Origin O of cosmic time (and apparent time) and its initial value will be denoted HO. So, to
avoid any ambiguity, all values relating to the dating used in section 1. will from now on be
noted: H∗

0 , τ
∗
ω, ....
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We have to note that, for the moment, all parameters, T, O, HO, ... of our model are purely
theoretical, their values relative to usual measures will can be only determined in the end of this
essay (2.5 and Annexe).

For our Universe U0, the Hubble parameter is then given by (1.7):

∀τ ∈ ]τ0, τ1[ , H (τ) = β
(HO + β) e3(1+ω)β . τ + (HO − β)

(HO + β) e3(1+ω)β . τ − (HO − β)
(2.6)

and the theoretical date of the Big Bang is then given by (1.8):

(2.7) τω =
1

3 (1 + ω) β
ln

(
HO − β

HO + β

)
It follows immediately that the half-life of the successive Universes is |τω| in cosmic time and Tω

in apparent time where Tω is the only solution to the elliptic equation

|τω| = T.

∫ π/2

0

√
1−

(
1− 1

/
T 2

)
sin2 α . dα (2.8)

The Hubble parameter is then de�ned for all cosmic time τ , out of singularities, by 2 |τω|-
periodicity:

H (τ) = H (τ ′) , τ ′ ∈ ]τω, |τω|[ / τ = τ ′modulo (2 |τω|) (2.9)

and in each singularity: lim
(τk)

−
H = lim

|τω |−
H =

(H2
O+β2)
2HO

, lim
(τk)

+
H = lim

τ+ω

H = +∞ (2.10)

Following the same process and using (1.10) the density, out of singularities, is given by:

ρ (τ) =
3

2πG
β2 (H2

O − β2) e3(1+ω)β τ ′

((HO + β) e3(1+ω)β τ ′ − (HO − β))
2 , τ ′ ∈ ]τω, |τω|[ / τ ≡ τ ′ mod (2 |τω|) (2.11)

and in each singularity: lim
(τk)

−
ρ = 3

4πG
β (HO+β)2(HO−β)

HO
, lim

(τk)
+
ρ = +∞ (2.12)

2.3 Hubble parameter in apparent time

We de�ne the Hubble parameter in apparent time by H (t) = a′/a (t), with a(t) = a(τt) (2.13)
and we have then:

H
′
(t) = γ′ (t)H (τt) + γ2 (t)

•
H (τt) (2.14)

Consequences :

(i) for |t| << Tω : H (t) ≈ H (τt) , H
′
(t) ≈

•
H (τt) (2.16)

(ii) lim
T−
ω

H = lim
T−
ω

γ . lim
|τω |−

H = +∞ , lim
(−Tω)

+
H = lim

(−Tω)
+
γ . lim

τ+ω

H = +∞ (2.17)

(iii) H
′
(t) ∼

T−
ω

(
1/Tω

)2 1√
1−

(
t/Tω

)22
 1√

1−
(
t/Tω

)2 . H (|τω|−)> 0

+
•
H
(
|τω|−

)
∈R


then : lim

T−
ω

H
′
= +∞ (2.19)
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(iv) H
′
(t) ∼

(−Tω)
+

−
(
1/Tω

)2
√

1−
(
t/Tω

)22 1

(HO + β) e3(1+ω)β . τ − (HO − β)
×


> 0︷︸︸︷
λ√

1−
(
t/Tω

)2 +

> 0︷︸︸︷
µ

(HO + β) e3(1+ω)β . τ − (HO − β)


then : lim

(−Tω)
+
H

′
= −∞ (2.20)

As H
′
(O) =

•
H (O) < 0 , it follows that, on ]t0, t1[ = ]−Tω, Tω[, the Hubble parameter in apparent

time is �rst decreasing until a time tmin > O (2.19) and then increasing: the discrepancy is
solved.
Furthermore, we have H∗

0 = H (tH) with tH∗
0
> tmin (2.20)

2.4.Consistency with the natural metric in apparent time of the (global)
space-time

The natural metric in apparent time of the Cosmos is clearly the �local� modi�ed FLRW
metric:
∀Uk : gkα,βdx

αdxβ = −γ2 (t) d (ct)2 + a2
[
dr2 + r2

(
dθ2 + sin2 θ dϕ2

)]
t ∈ ]tk, tk+1[ (2.21)

completed by the state equation p = ωc2ρ, ω > −1/3 with ρ(t) = ρ(τt) and p(t) = p(τt), (2.22)

Not null Christo�el symbols :

Γ
0

0 0 =
(
1/c

) γ′

γ
, Γ

0

rr =
(
1/c

) a
•
a

γ2
, Γ

0

θθ =
(
1/c

) a
•
a

γ2
r2 , Γ

0

ϕϕ =
(
1/c

) a
•
a

γ2
r2 sin2 θ

Γ
r

0r = Γ
r

r0 =
(
1/c

) •
a

a
, Γ

r

θθ = −r , Γ
r

ϕϕ = −r sin2 θ

Γ
θ

0θ = Γ
θ

θ0 =
(
1/c

) •
a

a
, Γ

r

rθ = Γ
r

θr =
1

r
, Γ

θ

ϕϕ = − sin θ cos θ

Γ
ϕ

0ϕ = Γ
ϕ

ϕ0 =
(
1/c

) •
a

a
, Γ

r

rϕ = Γ
r

ϕr =
1

r
, Γ

ϕ

θϕ = Γ
ϕ

ϕθ =
1

tan θ

Not null Ricci tensor components :

R00 =
(
3
/
c2
)(γ′

γ

a′

a
− a′′

a

)
Rrr =

(
1
/
c2
) 1

γ2

(
a′′a+ 2a′2 − γ′

γ
a a′

)
Rθθ = r2.Rrr , Rϕϕ = r2 sin2θ . Rrr

Curvature scalar :

R =
(
6
/
c2
) 1

γ2

(
a′′

a
+

(
a′

a

)2

− γ′

γ

a′

a

)
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Not null energy-impulse tensor components :

T 00 = ρ c2γ2 , T rr = ωc2ρ a2 , T θθ = T rrr
2, T ϕϕ = T rrr

2 sin2 θ

The Einstein equations system in apparent time is then reduced to the two following
independents equations:∣∣∣∣∣∣∣∣∣

00 :

(
a′

a

)2

= γ2

(
8πG

3
ρ+

Λc2

3

)
rr :

a′′

a
+

1

2

(
a′

a

)2

− γ′

γ

a′

a
= γ2

(
−4πG
c2

ωρ +
Λc2

2

)
i.e. by inserting 00 in rr and writing the system with H = a′/a :∣∣∣∣∣∣∣∣

(2.24) H
2
= γ2

(
8πG

3
ρ+

c2Λ

3

)
(2.25) H

′
+H

2 − γ′

γ
H = γ2

(
−4πG
c2

ωρ +
Λc2

2

) , t ∈ ]tk, tk+1[

Let us now replace H, H
′
and by their expressions (2.12), (2.13) and (2.22) respectively, we �nd

again the initial Friedmann-Lemaître system in (H(τt), ρ(τt)) for all t ∈]tk, tk+1[, i.e. for all
τ ∈]τ k, τk + 1[ which (H, ρ) is the only solution. Hence the cosmological model T .Σ is consistent
with the natural metric of the global space-time.

2.5 The Hubble Law in the vicinity of the singularity τ k / tk
Because of periodicity, it is su�cient to do our study on the local Universe U0.

We will do here a dynamic interpretation of the Hubble Law relatively to the second Newton
Law on vicinities τω

+ and |τω|−.
For that, we must take care to the two followings points:

(1) The Hubble Law is fundamentally a law in cosmic time since the Hubble
parameter itself directly emanates from the Friedmann-Lemaître equations. The Hubble
parameter in apparent time only expresses the greater or lesser concentration of cosmic time
units per apparent time unit following the proper curvature of the cosmic time and, moreover,
the scale factor functions a and a are fundamentally the same, just taken on di�erent times:
a(t) = a(τ) with τ = τt ̸= t(t ̸= 0).

The Hubble law is an expansion law to the future and hence its dynamic interpretation
must respect the arrow time: If in the vicinity |τω|−, time goes to the future and the arrow time
is then respected; at the opposite, in its vicinity τω

+, time goes to the past and we must to
redirect correctly the arrow time to the future.
More generally, we will consider that positive cosmic times are in the �future�of the Universe U0

and the negative are in its �past�, the border between past and future being then the absolute
origin 0.

Let us then consider a two objects system A+B of respective masses mA,mB , and of
in�nitesimal centres of mass distance AB = δl. For all couple in its validity domain, the
expansion Hubble Law can be interpreted as expressing the recession velocity of B relative to A
at time :

−→v
B /A

(τ) = H (τ) .
−→
δl ., with

−→
δl = δl.

−→
AB

AB
(2.23)
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Following the second Newton Law, A induces on B a repulsive force that we will name
Hubble force induced by A on B and expressed by (2.24):

−→
f

B /A
(τ) = ε (τ) .

d
(
mB
−→v

B /A

)
dτ

(τ) = ε (τ)mB

( •
H (τ) +H2 (τ)

)
.
−→
δl , ε =

∣∣∣∣∣+1 for τ > O

−1 for τ < O

Study of the condition ε (τ)
( •
H (τ) +H2 (τ)

)
> 0 :

Following (2.6) and (1.9), we obtain:

ε (τ)
( •
H (τ) +H2 (τ)

)
≈
τ+ω

(−1) β2 −2 (1 + 3ω) (H0 − β)2

((H0 + β) e3(1+ω)β τt − (H0 − β))
2 > 0 (2.25)

if, and only if ω > −1/3
As previous, we have found again the condition admitted in 1.2

Furthermore, it is clear, following (2.25) and 1.2 / ω > −1 respectively, that

lim
τ+ω

( •
H +H2

)
= −∞ and lim

|τω |−

( •
H +H2

)
≈ β2 > 0

On the other hand, as

•( •
H +H2

)
=

••
H +2H

•
H = − (1 + 3ω)H

•
H > 0,

•
H +H2 is always

increasing. We deduce from this that it exists one and only one cosmic time for which
•
H +H2 = 0, (2.26) and that time is O. For that, we de�ne then the value of HO as the only
positive solution of the equation (2.26), i.e., following (1.7),(1.8)
−6 (1 + ω) β2 (H2

O − β2) + 4H2
O = 0 and hence:

HO =

√
3 (1 + ω)

1 + 3ω
β (2.27)

It follows that all parameter values of the Cosmos are totally determined by the
Cosmological Constant Λ and the global state parameter ω.

2.5.1 The singularity |τω|− / T−
ω : the Big Chaos

Let us consider again the preceding two points system A+B in the vicinity |τω|−: it follows
from (2.25) that the instant power of the Hubble force is given by:

∆E (τ) = mB. ε (τ)
( •
H (τ) +H2 (τ)

)
δl2 dτ ≈

(τ (k))
−

lim
|τω | −

( •
H +H2

)
.δl2 dτ (2.27)

and then, in apparent time:

∆E (t) = ∆E (τt) .
dτ

dt
.dt ≈

T −
ω

lim
|τω | −

( •
H +H2

)
.δl2.γ (t) .dt →

t
<→ Tω

+∞ (2.28)

The instant energy transmitted in apparent time to the system A+B by the Hubble force will

therefore reach the �ssion activation threshold when t
<→Tω for any binding energy ensuring the

cohesion of system A+B, whether of gravitational or nuclear origin, ([4]), and that suggests the
following process:
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In a �rst time, breaking of cohesions by gravitational forces :crumbling of stellar formations:
planets... stars... galaxies...black holes

next, for t near of Tω, breaking of cohesions by nuclear forces: �ssion of atoms...atomic
particles.. subatomic particules... particles / antiparticules

The universe ends in a thermonuclear chaos which ultimate phase is the �ssion particles/
antiparticles.

2.5.2 The singularity τ+ω / (−Tω)
+: the Big Bang [4],[1]

At the opposite of the above situation where e�ects of the Hubble Law would be �negligible�

(H ≈
√
Λc2/3) without cosmic time curvature, it is not the same here: in the Universe U−1, when

τ
<→ τω, the energy produced by each �ssion preceding the ultimate participated both to the

temperature increase of the universe and the start of the following �ssion phase. The
quasi-in�nite energetic �ash due to the ultimate �ssion induces, in each point, at cosmic time τω
a colossal contribution ∆E of energy both thermic ∆Th and kinetic ∆Ek. This last induces a
recession velocity −→v

B /A
of each ultimate constituent B relatively to each other A such as

−→
AB =

−→
δl be in�nitesimal:

∆Ek = mB.v
2
B /A

= mB. (Hδl)2 (2.29)

which induces then an �in�nite� value of the Hubble parameter in cosmic time, but nevertheless
negligible compared to its value in apparent time.
The ultimate thermonuclear cataclysm �creates� an �in�nite� value of the cosmic time Hubble
parameter and, so, induces the in�ation phenomena, the curvature of the cosmic time only
ampli�es it but does not �create� it.
The contribution of fusion energy due to the nucleosynthesis is very brief and next , without new
energetic contribution, the H value falls rapidly as previous by its theoretical expression.
More precisely that suggests the following diagram:

The Big Chaos in τω
− induces the following consequences in τω

+:

(a) �in�nite� H value ( ← �in�nite� energetic �ash / (2.29)) → H >> H (2.30)
(b) particles/antiparticles gas → plasma (← �in�nite� electromagnetic �ash) with ultra high
temperature ( ← �in�nite� thermic �ash) and density (← �in�nite� H value / (1.4)) →
Nucleosynthesis

and then: Nucleosynthesis + ultra high density + (2.30) → �in�nite� expansion velocity in
apparent time: in�ation
The Big Chaos in (−τω)− creates en (τω)

+ the initial conditions of the Big bang.

So, the Cosmos �ares up and is reborn �identical to itself� like a phoenix at each singularity of its
curve of time.

Annexe: Relations between observational data and absolute dating
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Observational data are denoted (apparent time):

H̃∗
0 = γ (t0)H (τ0 = τ (t0)) = γ (t0)H

∗
0 , ρ̃∗0 = ρ∗0 = ρ (τ0) = ρ̃ (t0) , Ω̃∗

Λ = β2
/
H̃∗

0

2, Ω̃∗ =
8πG

3 H̃∗
0

2ρ
∗
0, ...

Assuming the global state parameter ω and the cosmological Constent determined from the
above datas,we obtain then successively:

HO =
√

3(1+ω)
1+3ω

β, τ → H(τ) and τ → ρ(τ),

τω = 1
3(1+ω)β

ln
(

HO−β
HO+β

)
, Tω, such as Tω

∫ π/2
0

√
1−

(
1/Tω

)2
sin2 α . dα = |τω|
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